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Equations are derived for the evaluation of the contribution to the electric 
dipole vibronic intensity of d-d and f - f  transitions in octahedral complex 
ions. Expressions for the evaluation of the crystal-field and ligand polarization 
terms and the cross term between are presented in symmetry adapted form 
and tables of the required coupling constants are given. 
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I. Introduction 

A large body of experimental data on the intensities of individual vibronic origins 
in the electronic spectra of coordination compounds has accumulated in the past 
twenty years [1-4]. Whilst it is recognized that these vibronic intensities contain 
information on nuclear [5] and ligand electron density [6] motions in crystals as 
well as on the electronic processes themselves, there exists no unified theoretical 
model within which to interpret this data. Early approaches used a crystal field 
approach with some success ([71, and references therein) and the observation 
that, for certain model calculations, the relative intensities were independent of 
the model parameters was particularly encouraging. However Mason has argued 
convincingly that it is necessary to complement the crystal field with the so-called 
ligand polarization term ([8], and references therein). Evidence is accumulating 
that in systems as diverse as octahedral [9] and tetrahedral [10] transition metal 
compounds,  octahedral and lower symmetry lanthanide complexes [11-13] and 
uranyl complex ions [14] the crystal field and ligand polarization contributions 
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are comparable. Under these circumstances the cross term (or interference term) 
between the two contributions which arises when the total transition moment is 
squared becomes significant. 

Two difficulties then arise. Firstly the relative intensities of the vibronic origins 
become dependant on the model parameters such as radial integrals [9]. Secondly 
it is necessary to exercise extreme care in the evaluation of the various terms if 
the phase of the interference term is to be found correctly. Of course the crystal 
field and ligand polarization dipole strengths are necessarily positive for cubic 
systems and unpolarized light. All previous general discussions of vibronic 
coupling have failed to treat this problem although we have shown in one specific 
case that this leads to grossly incorrect vibronic intensities [9]. 

The purpose of this paper is to provide a symmetry adapted approach to the 
calculation of the total dipole strengths associated with individual vibronic origins 
in centrosymmetric complex ions of the transition metals, lanthanides and 
actinides. We use Griffith's choice of phases together with standard set of 
wavefunctions, operators and symmetry coordinates to evaluate symmetrized 
ligand polarization vibronic coupling constants and transition multipole moments. 
These have two advantages over the calculation via the geometrical factors with 
respect to the cartesian coordinates previously reported [20]. Firstly the resultant 
"master equations" are much easier to use and secondly all terms now have 
consistent phases and therefore may be added together. The vibronic coupling 
terms have been evaluated using symmetry coordinates that transform correctly 
according to Table A-16 of Griffith [15]. The symmetry coordinates of Liehr [16] 
do not transform in this way. 

Whilst the master equations for the crystal field, ligand polarisation and interfer- 
ence terms are complex involving summations over many components this formal 
complexity enables all the contributions to be considered in a consistent way 
and their use is straightforward and quick. 

2. Method of  calculation 

CF LP Let IXrl~,or2~2 and P~r,~,-~r2~2 be the contributions to the electric dipole transition 
moment of the electronic transition ]Fly2) --> ]r2y2) from the crystal field-closure 
and ligand polarization mechanism, then the total transition dipole moment may 
be written as follows [8, 11] 

cv + LP 
gtr~1+r2v~= gtrl~,or2~2 ~r,~,or2~- (I) 

Within the closure approximation the a-component of the crystal field contribu- 
tion to the electric dipole vibronic transition dipole moment may be written in 
a symmetry adapted form, for simply reducible groups as [18, 19] 

E E v a l/2(r) 
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Here Ae stands for an effective energy, corresponding to the mean energy gap 
of the spin and parity allowed excitation, and St(k)  corresponds to the ~th 
component  of  a symmetry coordinate S which transforms under the Fth-irreduc- 
ible representation. A(F) represents the dimension of F. k is used to label the 
various vibrational modes of motion of the molecular system. The reduced matrix 
elements (r~]10r(k)l[F2) have been worked out and tabulated for d - d  and f - f  
type of electronic transitions [19]. 

The symmetry and normal coordinates are related to each other, by means of  
the transformation S = LQ so that: 

S (k) = Z e = Lk,t3rf6~c,Q~,(z). (3) 
l ' , y  

Thus, by combining Eqs. (2) and (3), we obtain the general identity. 

/*r~,,~r:~= = Z Z Z A '/2(F) V 
F,f" T,9 i,k ")/2 ~/ 

x V  / 

The a -component  of  the ligand polarization contribution to the electric dipole 
vibronic transition dipole moment may be written for isotropic ligands as [20] 

= Z Z Z v 7) 
r , P  ~,-? k , r  \ T1 ) ' 2  

• {r, IJ Mr(")  [1 (5) 

The symmetrized ligand polarization vibronic coupling constants, are defined by 
the relationship: 

= ~ L r  [ '  �9 -,r-~n-rv'~lvt~, r) - L Z{OGr'4,~/OS~(k)}o (6) 
L 

where ~L is the mean ligand polarizability, measured at the frequency of the 
L,'r electronic transition [8], and the Gr~,~ are the symmetry adapted geometrical 

factors [20]. Replacing the symmetry coordinates Sty(k) by the normal coordin- 
ates, we obtain the identity: 

LP, a (F1 F2 F ) r ~ , ~  
/"~rl"Yt~r2T2 ~- Z Z Z V LkiBr~ (k, r)(r~llMV(r)llr2>Or(i). (7) 

F,[" %'9 i,k,.r \ "Yl ")'2 ')1 

At this stage, it is convenient to assume that the potential energy surfaces of the 
terminal electronic states are described by identical harmonic functions. Whilst, 
this is only approximately true, the approximation is good for those cases where 
individual vibronic origins are well resolved. 

The total dipole strength of the electronic transition is then: 

DTotal / ,~ a ( tota l )  ~ \  2 
r, y,+r2~/2 -- E (8) - -  ~ltJ / ~ F 1 Y I ~ F 2 T  2 1 ]  

c~=X, Y ,Z  
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where: 

D T o t a l  - -  n C F  -'l- D LP -~- D (CF 'LP)  (9) 
FI~I~U2T 2 - -  L I F l y l o r 2 Y 2  FI~/l~F2~2 FlYlOF2T2 �9 

D c v  D LP and D (CF'LP) r,~,l-~r2z,2, rlv1-,r2v2 rlv,-~r2~2 are the crystal field, the ligand polarization 
and the crystal field-ligand polarization cross components of the dipole strength. 
The third term is the so called interference term and represents the coupling of 
the crystal field and the ligand polarization transition dipole moments. 

From Eqs. (4) and (7) we may obtain a general equation to account for the total 
dipole strength associated with the electronic transition iF1yl-~ [F2T2) , in cubic 
environments. A further simplification can be achieved by summing over all the 
components Yl and "/2 of  the overall electronic transition [18] giving the total 
dipole strength associated with the overall excitation IF1)+ IF2) as: 

/ ~ T o t a l  [ / . '  

~'i T1,T2 

where the summations are over the components yl, y2; the vibronic origins (vi) 
and progressions in even parity modes based on them. 

Thus the various contributions to the total dipole strength of the overall electronic 
transition are as given below: 

(i) The crystal field component (closure approximation) 

/~CF [ v ~ -- T1 *-'r,+r~ , , -  Y. E Z V Z Lk,L.. 
ex F,f" 3',s, Ol k ,m 

x (FllIOr(k)llr2> (FlllOr(m)llr2> I(01Qr(i)ll)l 2 (lO) 

(ii) The ligand polarization component 

D L P  r / ~  lt/-FV'a r L- 7") r,-,r2t i , = Z  Z Z A-l(F) Z LkiLm, Z ors, ~, 
a F,P ~,s, k,m r , r '  

r % ~  t x Brs, (m,r) ( r , [ igr ( r ) l l r~) ( r ,  IJM~(~')llr9 I(olor(i)ll)l ~ 
(11) 

(iii) The interference term 

D(CV, LP)t V, = 2(  2 ) ( F /  T, F )  r,-,r~ ~ ,, ~ e  E Y, E A-1/2( F)V Z Lk~Lm, 
r , r  -,/,S` o: T k,m 

(12) 

The above set of  Eqs. (10), (11) and (12) should be scaled by a factor A-I(F1) 
being A(F0 the orbital degeneracy of the initial electronic state. No correction 
for the refractive index of  the medium has been included in our master equations. 
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u_rz,,afv ~.) are The symmetrized ligand polarization vibronic coupling constants ,-,r~ t~, 
tabulated in Appendix 1. For actual calculations, these vibronic coupling con- 
stants should be used in preference to the derivatives of the ligand polarization 
geometrical factors with respect to the Cartesian coordinates, reported in Ref. 
[17], since a few set of numerical errors and missprints may be found. We also 
list in Appendix 2, the transition multipole moments relevant to intensity calcula- 
tions in octahedral centrosymmetric complexes. Observe that these vibronic 
coupling constants, listed in Appendix 1, have been derived using symmetry 
coordinates that transform correctly according to Table A-16 of Griffith [15]. The 
symmetry coordinates of Liehr [16] do not transform in this way. 

3. The interference term 

For illustrative purposes, we shall consider the evaluation of the interference 
term associated with the 14A2g,~--~laTzg), electric hexadecapole, vibronically 
allowed transition, in a dZ-transition metal compound of the type ML6, in 
Oh-symmetry. 

For example, in the case of the v6-vibronic origin, a combined crystal field- 
closure-ligand polarization calculation leads us to the identity 

t~ n - 7 r 2  
F'~(CF'LP) / " = +12,,~ Llx~--~66(t2]]oTl(6)lle ) (t2IIMTI(a)He)I(OIQ6[1)I 2. ( 1 3 )  L"* 4A2~r T2 ~/36) 

Here L66 is defined by the relationship: S6t = L 6 6 Q 6 t ;  t = a, b, c and its numerical 
value depends upon the choice of the intermolecular force field. The vibrational 
integral, may be evaluated within the harmonic approximation to give [8, 21] 

h 
I(01Q6[ 1>] z = 47rC/36 (14) 

/36 is in wavenumbers and corresponds to the vibrational frequency of the rau- 
bending vibration. Ro is identified with the metal-ligand bond distance. 

The reduced matrix elements which occur in Eq. (13) <t211OVl(6)lle) and 
(t2llMT,(4)lle) are given by the identities; see [15] and Appendix II of the 
present work. 

( t2 II oT'(6) II e> ---- -- 46 {~< Y4> + ~l('Y6)} 

(tz[IMr'(4)lle)= + [--e(r4)] 
21 

Here (Yk)= qe2(rk)/R~ +1, being (r k) the expectation value of r k between two 
d-radial functions, see Ref. [6, 12, 14, 15]. 

Following the method described in the present work, it is straightforward to 
evaluate the total dipole strength associated with a vibronically allowed excitation 
in the case of centrosymmetric ML6 complex ions, in octahedral symmetry. 
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Appendix 1. The ligand polarization vibronic coupling constants for a 
centrosymmetric ML6 complex ion in the isotropic case 

~r~,~,. ~) = --~L 2 [OC~/OS~(k) ]o  H e r e ,  we  def ine :  o r ~  t~, 
L 

N o t e  fo r  k = 6, F = T:. 

Table A.1. The quadrupole-dipole coupling (the r~., BrT, (k) 
coefficients are given in units of --~LRo 5) 

k=3 k = 4  k = 6  
7=2 7=2 7=2 

B e~ -6x/6 __9 ,5 Tt x ~- 

B ~'," 6,~ 94~/2 5~ /2  TIX 
T2Y'X -44c6 -3,/3 -5x/3 BT1Z 
~'" -4,/g -3,5 s ~  BTIY 

~o Y -6x/2 9 ,2s B Tx ~; . . . .  

E,,Y --6,J"6 --9x/-3/2 5",/3/2 BTI Y 
T2X'Y 4x/6 3~/3 - 5x/3 BT1Z 
T2z, Y - 4 , / g  - 3 ~  - 5 ~  BTIX 

B EO'Z 12~/2 9 0 TiZ 
BE,,z TI z 0 0 -- 5~fc3 

T~X,Z -4~f6 -3,f3 -5"f3, BTIY 
T2Y'z -4x/-6 -3x[3 5,f3 B T~ X 

Table A.2. The hexadecapole-dipole coupling (the r~,~ Br~ (k) 
coefficients are given in units of --OtLRo 7) 

k = 3  k=4  k = 6  
z = 4  7=4 7=4  

BT~X 
EO.X 5 " ~ / 2  ---fi5/4 - - 2 h / ~ / 4  BTaX 

~.x  - 15x/i-0/2 -39x/5/4 -21x/-5/4 BT1X 
T,V,X -3x[~ 3x/~ 3x/~ nTtZ 
T,Z,X 3",770 - 3 x / ~  3"]~ BTIy 
r2v'x 3x/iO 6x/'5 0 nTtZ 
r2z'x 3x/-~ 6x/5 0 BTI y 
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Table A.2--continued 

k=3 k=4 k=6 
r=4  r = 4  r = 4  

r t•  3-J~ -3-J~ 3-/-~ BTIZ 
r,z,Y -3 - /~  343~ 3,/~ BT~X 
T2X' Y 3"f-~ 6x/ 5 0 BTIZ 
r2z' r 3 ~ 6x/ 5 0 BT1X 

T,X,Z -3~7-d 3x/~ 3 " ~  BTIY 
r, r,z 3.,/~ - 3,,~ 3,J ~ BTIX 
r2x'z 3,/i 0 6,/-5 0 BTIy 
T2Y'Z 3X/~ 6x/5 0 BTIX 
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Table A.3. The 26-pole-dipole coupling (the rv.~ Brs, (k) coefficients 
are given in units of --fftLRo 9) 

k=3 k=4 k=6 
r=6  r=6  r=6  

r,,x 6 , f~  -6,f7 -6,f7 B T~ Z 
T~Z,X - -6"~  6x/7 --6"f7 BTtY 

B ~ - 1 , /~ 2. /~/2 -3 2x/~/2 
TI Z 

~7r .x - , /~  ,/~/2 3 24~/2 
bT2Y'X --3",/2--~ --3 4, /~/2 --3 4~/~/2 B TI Z 
bT2Z'X --3 2"/~ --3 4,/~/2 3 4, /~/2 BTIy 

r,x,v -6~/~  6"f7 -6"J-7 BT1Z 
rtz'r 6,fi4 -6~/7 -6",[7 BTtX 

B ~215 - l~i~ 2-J~/2 3./2./2./~/2 TIZ 
BT, x~T2z'x - - f i ~  2x~/2  -3x/2~/2 

br=x'r -3 2 , /~  -3 4. /~/2 344--~/2 BTiZ 
br2z'v -3~/2M -3 4 , ~ / 2  3-,/4~/2 B TI X 

r~x,z 6",/~ -6,J7 -6.f7 BTIY 
T, Y,Z -6.fi'4 6,/-7 -6 , f  7 BTIX 

Br, r%x,z -41-~ ,/2io/2 - 3 ~ / 2  

%~'~ ~ -42iOl2 -3 2,/2i0/2 BT1X 
bT2X'Z -3 2 - ~  -3 4 , ~ / 2  -3-,/4~/2 BT1y 
%y,z - a d z  -3 4,/-462/2 3 4./4-~/2 B Ti X 
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Appendix 2. Transition muitipole moments non zero reduced matrix elements (in 
units of  - e (r~) )  

I. d-d reduced matrix elements (iii) T 1-symmetry 
(i) Ax-symmetry: 

(el[Ma~(a)]le) = x /~  (eI[MT'(4)II@= 21 
�9 21 

2-f7 (iv) T2-symmetry 

(t2llMA'(4)llt2)= 21 (t211Mr:(2)l[@ = 3~f2 
7 

2~ (ii)  E- symmetry (e II M ~-2(2)II t=> = 
4 7 

<ellM~(2)lle) = - 7  "f5 
2.,/5 (ell M72(4)llt~> = 7 

(t2llM~(2) l[@ = 7 2 , ~  
24i~ <t~ll MT2(4) ll t~> = 21 

(ellME(4)lle> = 
21 

44~ 
(t2llME(4)][t2) = 

21 

II. f - f  reduced matrix elements (iii) E-symmetry 

(i) Al-symmetry 4 ~  
2x/21 (tlIlME(2)lltl)= 15 

(a2 [[ MAI(4) l[ a2) = 33 45 

2 0 ~  (tl[lME(4)lltl)= 1--{ 

(a2llMal(6)lla2)= 143 2 5 , / ~  
, / i  <t, II M ~ (6)11 h> = 429 

(tll[Ml~(4)[lt~)= 
11 2x/-~ 
25x/6 (t~ I[ MF(2) II t2) = 15 

%[]MA'(6)IIt~) = 
429 1 

,f7 (tlIIME(4)II@= -1~ 
(t211Ma~(4)llt2)= - 3-3 5 2x~ 

1 5 ~  <t~ll M ~(6)[I t2> = 429 

(t2[]MA~(6)llt2>= 143 (t2]lMe(4)[]@= 7xf5 
33 

5 4 ~  
(t 2[[ M E (6)[] t2) = 

143 

( i i )  A2-symmetry 
5 4 4 ~  

<t, II MA~( 6 ) II t~> = 429 
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(iv) T a -symmetry 

(a2] [ M:q(4) ll t=) = 
33 

l O , ~  
(a211MTI (6)  tl t2) = 

143 

( q l l M V , ( 4 ) l l t 2 ) =  
11 

5 4 ~  
(fi 11M T, (6)[I tz) = 

143 

(v) T2-symmetry 

z , / E  
(~ II t,) = 

15 

1 
( a ~ l l M T 2 ( a ) l l q ) =  - - -  

11 

(azll M"r2(6) II t,) = 
429 

(a=ltM~T2(6)llq) = 0 

( t t l IMT~(2)  IItl) = 
10 
, S d  

(q [ lMT~(4 ) l [q )  = 
11 

233 

5 , /~  
(t, IIM"T2(6)[I q) = 

572 

25,/}5 
<t, II M%(6)11 q) = 

572 

(tl lJ Mrz(2) It t2) = 
30 

2 ~  
(tatlMT2(4)[I t2) = 

11 

5 , / ~  
<t, II Ar t=> = 

132 

5 , / i ~  
<ta II Mbr2( 6 ) II t=> = 

572 

1 (t211MT~(2)II t= )  = 

,/gO <tA MVz(4) il t2> = 
33 

35, /~  
(t= II/Vf v=(6) II t=> = 

572 

(tzl[M~T2(6)llt=) = 1 5 , f ~  
572 
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